If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+88x+51=0
a = 5; b = 88; c = +51;
Δ = b2-4ac
Δ = 882-4·5·51
Δ = 6724
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6724}=82$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(88)-82}{2*5}=\frac{-170}{10} =-17 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(88)+82}{2*5}=\frac{-6}{10} =-3/5 $
| 7x-4(3x-2)-10=12 | | 6(6+x)=12 | | 16t^2+54t+16=0 | | -15+7=-4(x+9) | | 5=5+15t-4.9t^2 | | 6(6x)=12 | | 5(2x+6)=-42+32 | | 3(n+2)=5 | | −108π=6πj−108π=6πj | | 7x-21=119 | | 5.2=a−0.45.2=a−0.4 | | 21-7x=119 | | x2+5x-14=0 | | t^2-9t+39=0 | | x+2x+x+5=100 | | 0.5x+x-100=x+5 | | 64=x+x+x+2.5x+2.5x | | 2*r(4)=r(8) | | w-8=3w | | -13+13x+12x^2=0 | | 12-4*5=5x-4-3x+10 | | 4(2x-5(x-3)=6 | | -10^2-39x-35=0 | | 4z-8=3z+9 | | 4-4=5x-3x | | 1x+-5=5+-3x | | 7x+6-4=15 | | n²-65n+1000=0 | | 0.5x^2-6x+20=0 | | s(3)+s(7)=s(10) | | 15=7x+6-4 | | (3)+s(7)=s(10) |